
SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

Arduino SYS-STEM for Schools Training Methodology

MODULE 6

Liquid Crystal Displays

(utilizing the I2C serial protocol)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

TRAINING MODULE CONTENTS

➢ Objective

➢ Learning Outcomes

➢ Unit 1 - ABOUT LCD DISPLAYS

➢ Unit 2 - PARALLEL & SERIAL COMMUNICATION

➢ Unit 3 - SOFTWARE CONSIDERATIONS

➢ Additional Reading Materials

➢ Exercises

OBJECTIVE

Module 6 will give a thorough overview of LCD displays, their different

types, the way they work with Arduino's default and add-on libraries

and how to prototype with them;

Moreover, it will help the understanding of the key differences

between parallel and serial communication, enabling the selection of

the best suited display, fit for a particular purpose.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXPECTED LEARNING OUTCOMES
Knowledge

Upon completion of this module, the student will

be able to:

➢ Understand the key differences in the way

parallel and I2C displays work

➢ Know the pros and cons for each type of

display and understand the optimal type to

employ in each and every situation

Competences and Skills

Upon completion of this module, the student will

be able to:

➢ Use an I2C-based serial LCD display, making

use of most of the features provided by the

LCD library

UNIT 1
ABOUT LCD DISPLAYS

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

ABOUT LCD DISPLAYS

➢ An LCD display is an output peripheral that can be used to display most kind of data, including alphanumerical

characters, symbols and even simple graphics

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

➢ They're distinguished in two major types; the more complex to

use "matrix" displays and the simpler devices organized in rows

and columns. On the right, you can see a sample of the later,

that is, a 16 columns x 2 rows LCD display

The most common LCD display on the market; a 16x2 (cols x

rows), based on the HD44780 controller by Hitachi

➢ There is an internal ROM memory integrated into the LCD display's

controller (which in most displays, is a variant of the Hitachi HD44780) that

hosts character definitions.

➢ Most common characters (like the latin charset and some basic symbols) are

already there, defined and ready to use

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

The most common character codes that are pre-

defined in the HD44780 controller

PREDEFINED CHARACTERS

➢ You can define custom characters to use with your programs; however, there

is a limit of 8 total custom characters

➢ Each character (or "glyph") is represented through a 5x8 matrix of pixels.

These are defined in code, but there is also a number of online tools that

allow the easy creation of custom characters.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

A "smiley" character coded in a 5x8 fashion,

as per the display's requirements

CUSTOM CHARACTERS

UNIT 2
PARALLEL & SERIAL COMMUNICATION

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

➢ Parallel communication employs a larger number of pins, resulting in a somewhat complex circuit, but allows for

fast and easy data transfer between the LCD display and the microcontroller

➢ The pins, when working in parallel mode, are divided into three groups;

➢ Power supply pins

➢ Control pins

➢ Data pins

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

PARALLEL COMMUNICATION (INTRO)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

PARALLEL COMMUNICATION (PINS)
PIN# NAME TYPE DESCRIPTION

1 VSS / GND POWER SUPPLY Power supply ground

2 VDD / VCC POWER SUPPLY Power supply positive rail (usually +5V)

3 V0 POWER SUPPLY Variable voltage between VSS and VDD for contrast adjustment

4 RS INPUT Output from the controller (LOW or HIGH) switches between transferring data, or instructions

5 R/W INPUT Output from the controller (LOW or HIGH) switches between writing data to the LCD, or reading from it

6 E INPUT Output from the controller (LOW or HIGH) switches between the display being disabled, or not

7...14 DB0...DB7 INPUT/OUTPUT Data and instruction bus lines

15 L+ POWER SUPPLY Power supply positive rail (usually +5V) for the LED backlight

16 L- POWER SUPPLY Power supply ground for the LED backlight

PARALLEL COMMUNICATION (CIRCUIT)

➢ Serial communication, on the other hand, employs a much smaller number of pins. We'll be focusing on I2C,

which only requires 2 pins (in addition to power and ground). Other protocols (like SPI) would require a different

number of pins. This allows for a much simpler circuit which is easier to implement

➢ On the downside, the code can become much more complex and harder to maintain due to the added layer of

functionality. Luckily for us, there are libraries available that abstract away the complexity

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

SERIAL (I2C) COMMUNICATION

➢ A number of ICs exist, like the well-established in the Arduino world

PCF8574 that work as I2C-based I/O expanders, enabling us to use an 8-bit

parallel interfaces over I2C

➢ Of course, there is a great variety of LCD displays and add-on modules that

already feature these I/O expanders, which frees us from the need to design

and implement a circuit ourselves

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

SERIAL I/O EXPANDERS

A well-known I2C-based I/O expander module,

built on the common PCF8574 which can be

used alongside with 8-bit parallel LCD displays

LCD DISPLAY W/ I2C ADD-ON

On the left, a parallel LCD display is "capped" with

an I2C I/O expander, allowing us to issue commands

and send data through I2C.

Of course, LCD displays that implement I2C natively

do exist, but these are more expensive. As of that,

they are less common for hobbyist or educational

use.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

I2C COMMUNICATION (PINS)

PIN# NAME TYPE DESCRIPTION

1 VSS / GND POWER SUPPLY Power supply ground

2 VDD / VCC POWER SUPPLY Power supply positive rail (usually +5V)

3 SDA INPUT/OUTPUT Serial data

4 SCL CLOCK Serial clock. Communication is timed by the master device (e.g the Arduino)

See the difference? Apart from power and ground, communicating via I2C requires only 2

pins, from which only 1 (SDA) is actual data; the SCL line carries timed clock pulses to

synchronise the transmission of data.

1

2

3

4

I2C COMMUNICATION (CIRCUIT)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

PARALLEL VS SERIAL

A 4-bit parallel prototype. The missing 4 bits eliminate the need for 4

more wires, but make communication slower

A serial prototype using I2C. The circuit is much simpler than the

parallel one.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

PARALLEL VS SERIAL (PROS & CONS)

➢ Parallel is

➢ Faster in terms of data transfer and execution on the microcontroller, whilst it needs less coding by the developer (in

LOC) and is cheaper to implement in circuit (requires less and/or cheaper components);

➢ However, it may result in a complex prototype and may require greater development time, leading to lengthier time

to market

➢ Serial (I2C) on the other hand, is

➢ Easier to deploy especially for non-experts;

➢ Slower in terms of data transfer and execution, ad may result in a larger codebase and is generally more expensive;

➢ However, helping the developer avoid circuit mishaps, it eases prototyping and allows for less development time

UNIT 3
SOFTWARE CONSIDERATIONS

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

LCD LIBRARIES (1)

➢ Before being able to communicate with an I2C LCD display, we need to be able to communicate via I2C in

general.

➢ Arduino provides the so-called <Wire.h> library (I2C library) that frees us from the need to ‘talk’ directly to the

microcontroller in low-level. However, using the I2C library is also cumbersome. Although it abstracts away the

complexity of talking low-level, we would still need to mess with the LCD’s registers, issuing commands and

writing bytes.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

LCD LIBRARIES (2)

➢ The complexity of talking to LCD display via I2C is simplified by the available library. It provides a friendlier and

abstract way to communicate with the display itself, rather that writing to its’ registers.

➢ The most common library for I2C displays is the following;

➢ The <LiquidCrystal_I2C.h> library, developed by Frank de Brabander, available on GitHub and/or

GitLab (at the time of writing) (https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library).

https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

LCD LIBRARIES (3)

➢ Mind that, there is a plethora of libraries available, either for parallel or for I2C, each one targeting specific uses

and having its own pros and cons. There is no "good" or "bad" library; each one is simply fit for a particular

purpose

➢ In this unit we will focus on the I2C-based library by Frank de Brabander. It is the library that the exercises

are based and tested on, and it is a great general purpose I2C-based LCD library

➢ From now on, we are going to dive into studying the most representative and important functions and aspects

of the aforementioned library

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

INCLUDING THE LIBRARY

➢ The library needs to be installed first. Download the compressed ZIP file from GitHub/GitLab and install it in your

Arduino IDE distribution by selecting "Sketch > Include Library > Add .ZIP Library...“ from the menu.

The Wire (I2C) library is already included.

➢ Both libraries need to be included in your program before they can be utilized. Issue the following compiler

instructions in the top section of your code where most of your “include” statements reside.

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

CONSTRUCTOR: LiquidCrystal_I2C()

➢ This is the constructor; it creates a "LiquidCrystal_I2C" type

of object, which will be used to interact with the display. It

is issued like this;

LiquidCrystal_I2C LCD([addr], [cols], [rows])

NAME DESCRIPTION

LCD
The name of the constructor. Later on, we will use

this to refer to the object.

[addr]

The I2C address of the display or I/O expander. You

will need to look up this in the datasheet, but the

most common values are 0x3F and 0x27.

[cols] The number of columns. In our case is 16.

[rows] The number of rows. In our case is 2.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHOD: LCD.init()

➢ This method initialises communication between the Arduino and the slave I2C device (the LCD). It requires no

arguments.

LCD.init();

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHODS: LCD.backlight(), LCD.noBacklight()

➢ This method enables the LCD's backlight. Since we are now communicating through I2C and we do not have direct

access to the LCD's backlight power pins, we need an indirect method of enabling it. The method requires no

arguments, but the default state of the LCD is to have its’ backlight turned on.

LCD.backlight();

➢ There is also a separate method to switch off the LCD's backlight if desired, which is issued as follows;

LCD.noBacklight();

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHOD: LCD.createChar()

➢ This method creates a custom character and stores it in the display's memory. A total of 8 glyphs can be defined,

and each one is represented using a 5x8 matrix of pixels, like so;

byte smiley[8] = { B00000, B00000, B01010, B00000, B10001, B01110, B00000, B00000 };

LCD.createChar(0, smiley);

➢ The above code would produce the smiley shown on the right, but it would NOT print it,

rather just store it in the LCD's memory for later use

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHODS: LCD.home(), LCD.clear()

➢ This method "homes" the cursor, positioning it in the top left corner (column 0, row 0) of the screen. It needs no

arguments. It does NOT clear the contents, it only changes the cursor's position.

LCD.home();

➢ There is also a separate method to home and clear the LCD, simultaneously.

LCD.clear();

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHOD: LCD.setCursor()

➢ This method positions the cursor (i.e the position that new text will be placed) at the requested place. The

cursor can be either visible or invisible (more on that later)

LCD.setCursor([col], [row]);
NAME DESCRIPTION

[col]
The desired column (0...15) to position the

cursor

[row]
The desired row (0...2) to position the

cursor

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHODS: LCD.print(), LCD.write()

➢ The first method simply prints some data to the LCD display, at

the cursor's position;

LCD.print([data], [base]);

NAME DESCRIPTION

[data] The desired data to print

[base]

The base in which to print numbers.

Possible options are BIN, OCT, DEC, HEX.

This parameter is optional

➢ On the other hand, LCD.write() will output a single character on the display, enabling us to print ASCII codes with

ease. For example, the following statement will output the degree symbol (°) on the LCD;

LCD.write(0xDF);

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHODS: LCD.cursor(), LCD.noCursor()

➢ As said, the cursor can either be visible, or hidden. This is controlled with these two methods, namely cursor()

and noCursor(), which either show, or hide the cursor. Both of them expect no arguments.

LCD.cursor();

LCD.noCursor();

The cursor will be displayed either as an underscore, or as a square-ish block. This depends upon the LCD

display's controller implementation. By default, the cursor will not be displayed.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHODS: LCD.blink(), LCD.noBlick()

➢ In a similar manner, we can also blink (or stop the blinking of) the cursor. Both of these methods expect no

arguments.

LCD.blink();

LCD.noBlink();

By default, the cursor will not blink.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHODS: LCD.display(), LCD.noDisplay()

➢ The LCD display can also switch-off, but without losing its' data. Neat. You can use noDisplay() to shut-down the

display, and display() to power it up again, at the same time retrieving its' data and the cursor's position.

LCD.display();

LCD.noDisplay();

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHODS: LCD.scrollDisplayLeft(), LCD.scrollDisplayRight()

➢ Use these two methods to scroll the display. Each one will displace any existing content (including the cursor) on

the LCD one place to the left, or to the right, respectively. They expect no arguments, but it is important to

remember that the whole LCD will be scrolled and not a single line of it.

LCD.scrollDisplayLeft();

LCD.scrollDisplayRight();

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHODS: LCD.leftToRight(), LCD.rightToLeft()

➢ Use these two methods change the direction the text is printed on the LCD. By default, the LCD will print from

left to right, but you can use rightToLeft() to reverse that. Both expect no arguments.

LCD.leftToRight();

LCD.rightToLeft();

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

METHODS: LCD.autoscroll(), LCD.noAutoscroll()

➢ The first method, will make the text sent to the LCD to be printed at the same position, forcing any previous text

to be "pushed" to the left or right (respecting the leftToRight() and rightToLeft() methods). By default, autoscroll

is disabled.

➢ The second method disables autoscroll, restoring the default behaviour

LCD.autoscroll();

LCD.noAutoscroll();

EXTRA READING MATERIALS

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

Online Resources

➢ Reference for the LiquidCrystal library by arduino.cc. An invaluable resource that applies not only to 8-bit

parallel displays for which it has been designed, but also on I2C ones, as most third-party libraries are made

compatible with it;

➢ https://www.arduino.cc/en/Reference/LiquidCrystal

http://arduino.cc
https://www.arduino.cc/en/Reference/LiquidCrystal

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

Online Resources

➢ The GitHub repository for the LiquidCrystal_I2C library that we're using for this module. Unfortunately, at the

time of writing it didn’t contain a usage guide, but the examples are pretty much self-explanatory;

➢ https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library

https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library

EXERCISES / TESTS / QUIZZES

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

➢ This is an easy, introductory exercise.

➢ A predefined "Hello, world!" text shall be displayed on the LCD display for a set duration, then hidden for the

same amount of time, then shown again, etc. This process is to be repeated indefinitely.

➢ You are not allowed to use delay() or delayMicroseconds() in your code, thus, you need to figure a way to

achieve the same result using the timekeeping functions.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 1 (INTRO)

H e l l o , w o r l d !

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 1 (SCHEMATIC)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 1 (PROTOTYPE)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 1 (CODE)

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

// Defining an object named LCD of type LiquidCrystal_I2C

LiquidCrystal_I2C LCD(0x3F, 16, 2);

// Last is a timer variable

// Tick is used to invert to operation of our program

unsigned long last = 0, tick = 0;

void setup()

{

// Initialises the LCD object

LCD.init();

// Turns on the backlight

LCD.backlight();

}

void loop()
{

// Run the program every 2000ms (2s):
if (millis() > last + 2000)
{

// On even ticks, clear the LCD:
if (tick % 2) {

LCD.clear();
}
// On odd ticks, print a message:
else {

LCD.print("Hello, world!");
}

// Update last with the current time and
// increase tick
last = millis();
++tick;

}
}

➢ Only slightly more advanced than the previous exercise. The user is required to enter any text on the Serial

Monitor. Then, the program counts its' characters and writes the text’s length on the 1st line of the LCD, plus the

text itself on the 2nd line.

➢ This exercise will require you to work with text entered through the Serial Monitor (remember how to use it,

right?) and text processing.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 2

L 4

> T E S T

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 2 (SCHEMATIC)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 2 (PROTOTYPE)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 2 (CODE – 1/3)

// Including the required libraries

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

// Creating the terminal symbol as a 5x8 HEX array

uint8_t terminalSymbol[8] = { 0x00, 0x10, 0x08, 0x04, 0x08, 0x10, 0x07, 0x00 };

// Other variables

String inputText;

size_t inputLen;

// The LiquidCrystal object

LiquidCrystal_I2C LCD(0x3F, 16, 2);

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 2 (CODE – 2/3)

void setup()

{

// Start the UART port and wait for it to be ready

Serial.begin(9600);

while(!Serial) ;

// Initiate the LCD and light it up

LCD.init();

LCD.backlight();

// Store the created character into the display’s

// memory

LCD.createChar(0, terminalSymbol);

// Home the LCD (position the cursor at 0,0) and print
// some text
LCD.home();
LCD.print("L: ");

// Position the cursor at 0, 1
LCD.setCursor(0, 1);

// Write byte ‘0’; the glyph that we created
LCD.write(0);

} // END of setup()

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 2 (CODE – 3/3)

void loop()

{

// If there’s any incoming serial data…

if (Serial.available())

{

// Read the data and size its’ length

inputText = Serial.readString();

inputLen = inputText.length();

// Clear the LCD and home it at the same time

LCD.clear();

LCD.print("L: ");

// Position cursor at 2, 0 and print the length (num)
// as a string
LCD.setCursor(2, 0);
LCD.print(String(inputLen));

// Position cursor at 0, 1 and write byte 0 (the custom
//glyph)
LCD.setCursor(0, 1);
LCD.write(0);

// Finally, position the cursor ar 2, 1 and print the
// input text
LCD.setCursor(2, 1);
LCD.print(inputText);

} // END of IF
} // END of loop()

➢ Extending exercise 1, we now utilize data from a DHT11 combined temperature and

humidity sensor. We are also making use of the extended ASCII table of our HD44780-

based LCD display, in order to print the degrees symbol.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3

T E M P : 2 2 . 4 0 ° C

H U M D : 5 0 . 1 0 %

A DHT11 combined temperature and

relative humidity sensor.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3 (SCHEMATIC)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3 (PROTOTYPE)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3 (CODE – 1/3)

// Including the required libraries

#include “DHT.h” // INSTALL FIRST!

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

// Define the required data for our sensor e.g.

// type (DHT11) and pin on which it is connected (D2)

#define DHTPIN 2

#define DHTTYPE DHT11

// Init the sensor object with the above data

DHT sensor(DHTPIN, DHTTYPE);

// Float var for the temperature
float tmp;

// Float var for the relative humidity
float hum;

// The LiquidCrystal object
LiquidCrystal_I2C LCD(0x3F, 16, 2);

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3 (CODE – 2/3)

void setup()

{

// Initialize the sensor

sensor.begin();

// Initiate the LCD and light it up

LCD.init();

LCD.backlight();

} // END of setup()

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3 (CODE – 3/3)
void loop()

{

// The DHT11 sensor can only be read once every 2

// seconds. Thus, we need to put a delay in the loop

delay(2000);

// Read values from the sensor and assign them

tmp = sensor.readTemperature();

hmd = sensor.readHumidity();

// This is for error checking. Halt execution and

// retry if we have erroneous values

if (isnan(tmp) || isnan(hmd))

return;

LCD.home();

LCD.print("TEMP: ");

LCD.print(String(tmp) + " ");

// Code 0xDF (ASCII HEX) is the degrees symbol!

LCD.write(0xDF);

LCD.print("C");

LCD.setCursor(0, 1);

LCD.print("HUMD: ");

LCD.print(String(hum) + " ");

LCD.print("%");

} // END of loop()

➢ Further extending exercise 3, we now deal with scrolling text, and simple output peripherals like an LED and a

buzzer.

➢ If the DHT11 sensor reports values that are higher than our preset limits, an alarm will go off, producing an

audible (buzzer) and visible (LED) warning. Moreover, the display will stop showing the data from the sensor,

switching to a predefined warning text that scrolls indefinitely to the left

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3.1

➢ This is a more advanced scenario to produce, as it will require multiple timekeeping operations and bigger

control blocks.

NORMAL STATE:

WARNING STATE:

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3.1 (CONT.)

T E M P : 2 2 . 4 0 ° C

H U M D : 5 0 . 1 0 %

R N I N G . . .

W A R N I N G .

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3.1 (SCHEMATIC)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3.1 (PROTOTYPE)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3.1 (CODE – 1/5)

// Including the required libraries

#include “DHT.h” // INSTALL FIRST!

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

// Define the required data for our sensor e.g.

// type (DHT11) and pin on which it is connected (D2)

#define DHTPIN 2

#define DHTTYPE DHT11

// Init the sensor object with the above data

DHT sensor(DHTPIN, DHTTYPE);

// First are the values read from the
// sensor, second are the set limits
float tmp, tlim = 30;
float hum, hlim = 80;

// All of these are for time-keeping
// operations!
unsigned long tick = 0;
unsigned long tock = 0;
unsigned long last = 0;
unsigned long beep = 0;

LiquidCrystal_I2C LCD(0x3F, 16, 2);

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3.1 (CODE – 2/5)

void setup()

{

// Initialise the DHT sensor:

sensor.begin();

// Initialise the LCD:

LCD.init();

// Enable the backlight:

LCD.backlight();

} // END of setup()

void loop()
{

// Read values from the sensor every
// 2 seconds (this sensor cannot be
// read more often):
if (millis() > last + 2000)
{

tmp = sensor.readTemperature();
hum = sensor.readHumidity();

// Error checking
if (isnan(tmp) || isnan(hum))

return;

// Update the last execution time
// with the current time:
last = millis();

}

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3.1 (CODE – 3/5)

// If either the temp, or the humidity is above

// the limits (which is considered al alarm), …

if ((tmp > tlim) || (hum > hlim))

{

// And tick is zero:

if (!tick)

{

// Clear the LCD and print a warning

// message

LCD.clear();

LCD.print("WARNING...");

LCD.setCursor(0, 1);

LCD.print(" WARNING...");

}

else

{

// Else (if tick is not 0)

// move the text to the left:

LCD.scrollDisplayLeft();

}

// Increase tick, so that in the next loop,

// the text moves instead on clearing again:
++tick;

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3.1 (CODE – 4/5)
// Check the beep timer, and fire pin 10 (LED)
// every 350ms (with the well established
// time-keeping trick) as well as beep the buzzer:
if (millis() > beep + 350)
{

// Enable the LED pin and buzz every *other*
// 350ms:
if (tock % 2)
{

digitalWrite(10, HIGH);
tone(11, 2500);

}
// Else, drive the pin LOW and stop the sound:
else
{

digitalWrite(10, LOW);
noTone(11);

}

// Now increase tock for the routine to fire
// (on-off) every other 350ms:
++tock;

// Lastly, keep track of the timestamp in order
// for the alternation to work:
beep = millis();

}
}

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 3.1 (CODE – 5/5)

// If there is NO warning state, …

else

{

// Disable the warning alternation functions:

tick = 0;

tock = 0;

// Drive the LED pin LOW and disabled the

// buzzer:

digitalWrite(10, LOW);

noTone(11);

// Clear the LCD and print out the

// sensor values:

LCD.clear();

LCD.print("TEMP: ");

LCD.print(String(tmp) + " ");

LCD.write(0xDF);

LCD.print(“C");

LCD.setCursor(0, 1);
LCD.print("HUMD: ");
LCD.print(String(hum) + " ");
LCD.print("%");

} // END of else

delay(350);

} // END of loop()

➢ Combining what we've learnt from the previous exercises, we are going to replicate a

pharmacy display. Most pharmacies have a display that not only shows the "Hygeia basin

and snake", but also the date, time, and sometimes even the temperature

➢ On the 1st line of the display, we are going to display the Hygeia basin and snake, which is

a custom glyph, alongside a predefined text like "Welcome!“

➢ On the 2nd line, however, we are going to switch from displaying the current date and

time, to showing the temperature, as read from the DHT11.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 4

The "Hygeia basin and snake", symbol of the

ancient Greek goddess of health, Hygeia.
P H A R M A C Y O P E N

T E M P : 2 2 . 4 0 ° C

P H A R M A C Y O P E N

1 9 / 0 4 / 2 0 2 0 2 0 : 2 3

➢ You might wonder "How we are going to retrieve the current date and time?"

➢ We will need to use yet another I2C peripheral device that is called "an RTC" (real-

time clock) for this purpose. Being an I2C device as well, it can reside on the same

bus with the display without any conflict

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 4 (CONT.)

A common RTC module,

based on the DS1307 IC.

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 4 (SCHEMATIC)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 4 (PROTOTYPE)

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 4 (CODE – 1/3)

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

// Library for the Real-Time Clock (RTC) module:

#include "RTClib.h“ // INSTALL FIRST!

#include "DHT.h"

#define DHTPIN 2

#define DHTTYPE DHT11

// Construct a DHT type object:

DHT sensor(DHTPIN, DHTTYPE);

// Holds the current temperature:
float tmp;
// The DateTime object (named now) is a special
// structure that incorporates date and time:
DateTime now;

unsigned long tick = 0;

LiquidCrystal_I2C LCD(0x3F, 16, 2);

// Construct an RTC object:
RTC_DS1307 RTC;

// These will define the symbol presented as a pharmacy
// snake:
uint8_t pharmacySnake[8] = { 0x02, 0x05, 0x1F, 0x0E, 0x06,
0x0C, 0x04, 0x0E };

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 4 (CODE – 2/3)

void setup()

{

// Init the DHT sensor and wait for 2s (this is

// required by the sensor) before reading:

sensor.begin();

delay(2000) ;

// If the RTC cannot initialise halt execution;

// while(1) is an infinite loop:

if(!RTC.begin())

while(1);

// Check if the RTC already has a date in

// its registers:

if (! RTC.isrunning())

// If not, set it, using compiler macros (current

// system time):

RTC.adjust(DateTime(F(__DATE__), F(__TIME__)));

LCD.init();

LCD.backlight();

// This will store the snake symbol in the 1st
// “spot” in the LCD’s memory:
LCD.createChar(0, pharmacySnake);

LCD.home();
LCD.write(0);
LCD.print(" PHARMACY OPEN");

}

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

EXERCISE 4 (CODE – 3/3)

void loop()

{

now = RTC.now(); // Get the current time

tmp = sensor.readTemperature(); // And temp

// This will clear the LCD:

LCD.setCursor(0, 1);

LCD.print(" ");

// With our established trick, display

// every other time, either the date and time:

if (tick % 2 != 0)

{

LCD.setCursor(0, 1);

LCD.print(String(now.day(), DEC) + "/");
LCD.print(String(now.month(), DEC) + "/");
LCD.print(String(now.year(), DEC) + " ");
LCD.print(String(now.hour(), DEC) + ":");
LCD.print(String(now.minute(),DEC));

}

// Or the temperature:
else
{

LCD.setCursor(0, 1);
LCD.print("TEMP: " + String(tmp) + " ");
LCD.write(0xDF);
LCD.print("C");

}

++tick; // Increase tick for the trick to work
delay(3000); // Do this every 3s

} // END of loop()

CONGRATULATIONS

You have completed SYS-STEM Module 6

SYS-STEM – Arduino SYS-STEM for Schools
Erasmus + Key Action 2 Strategic partnership - 2019-1-ES01-KA201-064454

